ORGANIC LETTERS

2005 Vol. 7, No. 21 4637–4639

A Double-Twist Möbius-Aromatic Conformation of [14]Annulene

Henry S. Rzepa

Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AY, U.K.

rzepa@imperial.ac.uk

Received August 1, 2005

ABSTRACT

B3LYP and KMLYP/6-31G(d) calculations predict a double-helical and chiral conformation of [14]annulene with the topological properties of a double-twist Möbius band as highly aromatic; its energy with respect to the known Hückel-aromatic conformation is predicted to be stabilized by suitable ring substitution.

The topological object known as a Möbius strip or band can be formed by cutting, imparting a half-twist (π) , and rejoining a cylinder. Heilbronner1 was the first to demonstrate theoretically using Hückel MO theory that when this is done to a cylindrical array of p atomic orbitals, maximum electronic stability is achieved when the resulting molecular orbitals are populated with 4n (n is an integer) electrons in a closed shell configuration. In the two decades following this proposal, the most successful application of this concept was its use by Zimmerman for rationalizing pericyclic reactivity and stereoselectivity.2 A wide variety of allowed pericyclic transition states have been attributed to half-twist Möbius stability.2 It has also been demonstrated that Möbius conjugation at a transition state also results in significant aromaticity.3 It is only recently, however, that the successful synthesis of a stable crystalline half-twist 4n π -electron Möbius [16] annulene has enabled its structure and properties to be measured.⁴ Previously, several single half-twist Möbius conformations of [12]-, [16]-, and [20]annulenes had been

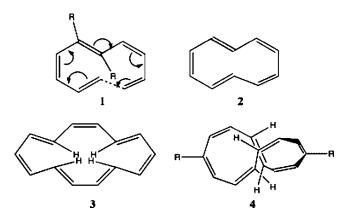
Very much less attention has been given to the related family of topological objects formed by imparting further half-twists to a cylinder, and in particular to Möbius (the topological term is paradromic) bands formed from two (2π) or three (3π) such operations.⁶ All of the resulting objects are in fact chiral, a property which is potentially exploitable in many areas of modern chemistry. It has recently been suggested⁷ that the pericyclic electrocyclic reaction of (Z,E,Z) decapentaene 1, formalized as a double-twist Möbius system with an 4n+2 electron count, may be competitive in energy and aromaticity with the more conventional achiral 4n+2 electron Hückel transition state bearing no topological twist. It was speculated that examples of not only further double and triple-twist transition states, but also stable molecule

located computationally, although non-Möbius forms were lower in energy in all cases.⁵

⁽¹⁾ Heilbronner, E. Tetrahedron Lett. 1964, 1923-8.

^{(2) (}a) Zimmerman, H. E. *J. Am. Chem. Soc.* **1966**, 88, 1564–5. (b) Zimmerman, H. E. *Acc. Chem. Res.* **1971**, 4, 272–80.

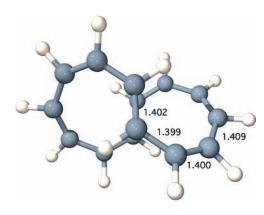
^{(3) (}a) Jiao, H.; Schleyer, P. v. R. *Angew. Chem., Int. Ed.* **1993**, *32*, 1763–5. (b) Jiao, H.; Schleyer, P. von R. *J. Chem. Soc., Perkin Trans.* **2 1994**, 407–10.


^{(4) (}a) Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. *Nature* **2003**, *426*, 819–21. (b) Castro, C.; Chen, Z.; Wannere, C. S.; Jiao, H.; Karney, W. L.; Mauksch, M.; Puchta, R.; Eikema-Hommes, N. J. R.; Schleyer, P. v. R. *J. Am. Chem. Soc.* **2005**, *127*, 2425–32.

^{(5) (}a) Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S. *J. Chem. Soc.*, *Perkin Trans.* 2 **2000**, 1415. (b) Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. v. R. *Org. Lett.* **2002**, *4*, 3431–4.

^{(6) (}a) Martin-Santamaria, M.; Rzepa, H. S. *J. Chem. Soc., Perkin Trans.* 2 **2000**, 2378–81. (b) For a review, see: Rzepa, H. S. *Chem Rev.* **2005**, in press.

⁽⁷⁾ Rzepa, H. S. Chem. Commun. 2005, DOI: 10.1039/B510508K.


examples of such higher order Möbius aromaticity might be discoverable. Here, an exploration of this last suggestion is made, applied to a double-twist conformation of the 4n+2 π -electron [14] annulene.

Previously, the transition state 1 was reported as having C_2 symmetry, with a geometry predicted to show little bond length alternation $(\Delta r \ 0.029 \text{Å})^3$ and a magnetic NICS(0) index $(-14.9 \text{ ppm})^8$ typical of ring aromaticity. By analogy, the annulene 2 is an obvious starting point to apply this concept to a stable molecule rather than to a transition state. Compound 2 has previously been shown⁹ to prefer a C_2 symmetric "twist" conformation as the overall conformational minimum. In this conformation, the bond alternation is high⁴ $(\Delta r \ 0.139 \text{Å})$, and the NICS(0) value $(-0.3 \text{ ppm})^8$ shows no evidence of aromaticity. Inspection of the geometry shows why; the C-C dihedral angles around this ring (109, 9, 46, 3, 46, 150, -46, 3, -46, -9°) show one almost orthogonal value which strongly inhibits the cyclic " p_{π} " conjugation. The 10-membered ring is simply too small to accommodate any even distribution of a double-twist, and the resulting molecule is nonaromatic and alkene-like in character. This is in contrast to the transition state 1, where the longer C-C forming bond and its local geometry better accommodates the angular strain, allowing better cyclic conjugation.

The obvious solution to this problem is to increase the ring size to a [14]annulene **3**. A double-helical D_2 -symmetric conformation **4** (Figure 1) emerges as accommodating ring strain with little penalty compared to the known conformation **3**. When all of the ring substituents are hydrogens, **4** is predicted as 15 kcal/mol higher in free energy than **3** (Table 1). In part at least, **3** may be stabilized with respect to **4** by "H—H" interactions for the hydrogens shown, which Bader and co-workers have suggested ¹⁰ may be worth up to 10 kcal mol⁻¹.

The calculated ${}^{1}H$ NMR shifts for the hydrogens in **4** are the typically aromatic \sim 7.1 ppm for the outer atoms but a

Figure 1. Calculated (B3LYP/6-31G(d)) structure showing the helical structure for **4**. 3D rotatable structures and computed properties are available in the Supporting Information.

more unusual 2.8 ppm for the four hydrogens shown for 4. The bond length alternation (Δr 0.010 Å) and the NICS(0) value at the overall ring centroid (-18.3 ppm) is also indicative of a conjugated aromatic system. When compared with 3 (Δr 0.014 Å, NICS(0) -15 ppm) it is apparent that the aromaticity is not merely retained but enhanced, despite the lower p-orbital overlap resulting from the double-twist present. This twist is, however, reasonably evenly distributed around the ring (CCCC dihedral angles 176, -24, -17, -7, -7, -17, -24, 176, -24, -17, -7, -7, -17, -24°) with no orthogonality present to inhibit conjugation. That a double-twist conjugated Möbius ring can be even more aromatic than a Hückel system and not unfeasibly less stable has not previously been anticipated.

Schleyer, Schaefer, et al. 11 have suggested that the B3LYP method underestimates bond length variation in both [14]and [18] annulene, and so it is important to evaluate whether the above result may be simply an artifact. The KMLYP density functional rehybridization¹² has been shown to more reliably predict the relative bond length in nontwisted Hückel annulenes, while being computationally very much faster than the most reliable method (CCSD(T)).¹³ Applied to 4, KMLYP reveals almost no bond alternation (Δr 0.012 Å, NICS(0) -21.8 ppm), retaining D_2 symmetry (any bond alternation would reduce the symmetry to C_2). In marked contrast, as reported previously, 11 the bond alternation in 3 increases at the KMLYP level, the symmetry is reduced to C_s from C_{2h} (Δr 0.096 Å), and the NICS(0) value increases to -7.0 ppm. The free energy difference between 3 and 4 is reduced to 12.8 kcal mol⁻¹.

Although **4** is *only* 13–15 kcal mol⁻¹ higher than **3**, the equivalent equilibrium concentration of this conformation

4638 Org. Lett., Vol. 7, No. 21, 2005

^{(8) (}a) Schleyer, P. von R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. *J. Am. Chem. Soc.* **1996**, *118*, 6317–8. (b) Schleyer, P. v. R.; Manoharan, M.; Wang, Z.; Kiran, X. B.; Jiao, H.; Puchta, R.; Eikema Hommes, N. J. *Org. Lett.* **2001**, *3*, 2465–8. (c) Corminboem, C.; Heine, Thomas; S.; Gotthard; Schleyer, P. von R.; Weber, J. *Phys. Chem. Chem. Phys.* **2004**, *6*, 273–6. (d) For a review, see: Schleyer, P.; Chen, Z.; Wannere, C.; Corminboeuf, C.; Puchta, R. *Chem. Rev.* **2005**, in press.

 ⁽⁹⁾ Price, D. R.; Stanton, J. F. Org. Lett. 2002, 4, 2809-2811.
 (10) Matta, C. F.; Hernandez-Trujillo, J.; Tang, T.-H.; Bader, R. W. F. Chem. Eur. J. 2003, 9, 1940-1951.

^{(11) (}a) Wannere, C. S.; Schleyer, P. v. R. *Org. Lett.* **2003**, *5*, 865–8. (b) Wannere, C. S.; Sattelmeyer, K. W.; Schaefer, H. F.; Schleyer, P. v. R. *Angew. Chem., Int. Ed.* **2004**, *43*, 4200–6.

^{(12) (}a) Kang, J. K.; Musgrave, C. B. *J. Chem. Phys.* **2001**, *115*, 11040–51. (b) Senosiain, H. J. P.; Musgrave, C. B.; Golden, D. M. *Faraday Discuss*. **2001**, *119*, 173–89.

^{(13) (}a) Sulzbach, H. M.; Schaefer, H. F.; Klopper, K.; Lüthi, H. P. *J. Am. Chem. Soc.* **1996**, *118*, 3519–20. (b) King, R. A.; Crawford, T. D.; Stanton, J. F.; Schaefer, H. F. *J. Am. Chem. Soc.* **1999**, *121*, 10788–93. (c) Rzepa, H. S.; Sanderson, N. *Phys. Chem. Chem. Phys.* **2004**, *6*, 310–3.

Table 1. Calculated^a Properties for 2-4

		Corrected for ΔG_{298}		
system, method	energy, hartree	$\{ { m relative, kcal mol^{-1}} \}$	NICS(0), ppm	$\Delta r, ^b ext{Å}$
2, R = H B3LYP/6-31G(d)	-386.96236	_	-0.3	0.139
3, R = H B3LYP/6-31G(d)	-541.81229^e	$-541.61347 \{0.0\}$	-14.9	0.014
3, R = H KMLYP/6-31G(d)	-540.70861^{f}	-540.49899 $\{0.0\}$	-7.0	0.096
$3, R = F^c B3LYP/6-31G(d)$	-1930.95347	$-1930.88694 \{3.0\}$	-4.6	0.117
4, R = H B3LYP/6-31G(d)	-541.78948^e	-541.58966 $\{15.0\}$	-18.3	0.010
4, R = H KMLYP/6-31G(d)	-540.68963^{f}	-540.47858 $\{12.8\}$	-21.8	0.012
$4, R = F^c B3LYP/6-31G(d)$	-1930.96208	$-1930.89178 \{0.0\}$	-15.9	0.012
4, $R = (R,R)$ -CHFI B3LYP/6-31G(d) ^d	-840.48090	$-840.27618\ \{1.3\}$	-17.3	0.021
4, R = (S,S) -CHFI B3LYP/6-31G(d) ^d	-840.48266	$-840.27820\;\{0.0\}$	-17.3	0.023

^a Calculations performed using Gaussian 03, Revision C.01, Gaussian, Inc., Wallingford CT, 2004 (see the Supporting Information for the full citation). ^b Difference, in Å, between the shortest and longest ring C–C bond lengths. ^c Ring perfluorinated. ^d Stuttgart–Dresden SDD effective core potential for iodine. ^e B3LYP/cc-pVQZ energies, respectively, −542.0445, −542.0212, ΔE 14.5 kcal mol⁻¹. ^f CCSD/6-31G(d) single point energies, −540.0382, −540.0163, ΔE 13.7 kcal mol⁻¹.

would be far too small to be experimentally detectable. However, the possible stabilization of **3** by "H–H" interactions, something not possible in **4**, and the differing steric environments, suggests one strategy for inverting the stability of these two isomers. Replacing these hydrogens with, e.g., F would replace any H–H stabilization in **3** with F–F lone-pair repulsion. Calculations suggest that indeed **4** (fully perfluorinated) is now predicted to be the more stable conformation by ΔG 3.0 kcal mol⁻¹, while **3** is destabilized and also dearomatized by such substitution.

Another feature unique to **4** is its prominent chirality, which suggests another interesting experiment. If the groups R are replaced with a chiral auxiliary (e.g., R= CHFI), then two diastereoisomers are possible with respect to the helical ring chirality. ¹⁴ The diastereomeric energy difference is

predicted to be 1.3 kcal mol^{-1} if substituted at R, which would result in a detectable unequal equilibrium mixture of two diasteroisomers. The achiral conformation 3, having only C_s symmetry, cannot sustain such isomerism.

The synthesis of a 4*n* Möbius [16]annulene was a challenging undertaking, and indeed only one such successful synthesis has been reported to date.⁴ The present calculations suggest that double-twist and perhaps even triple-twist Möbius systems may be an equally viable target for synthetic attention.

Supporting Information Available: 3D coordinates for **1–4** presented using the Jmol applet. This material (Copyright 2005 Henry Rzepa) is available free of charge as OpenData via the Internet at http://pubs.acs.org.

OL0518333

Org. Lett., Vol. 7, No. 21, 2005

⁽¹⁴⁾ Miyagawa, T.; Furuko, A.; Maeda, K.; Katagiri, H.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2005, 127, 5018–5019.